Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675210

RESUMO

Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.

2.
Transl Neurodegener ; 13(1): 2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173014

RESUMO

BACKGROUND: Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aß) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aß (fAß) burden, microglial modulation, and neuroprotection. METHODS: We designed a nanotechnology approach to regulate the SR-mediated intracellular fAß trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aß fibrilization, fAß-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS: AM-NPs interrupted Aß fibrilization, attenuated fAß microglial internalization via targeting the fAß-specific SRs, arrested the fAß-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAß. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAß. CONCLUSIONS: The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aß aggregation and arrest the fAß-mediated pathological progression in microglia and neurons.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Neuroblastoma/metabolismo
3.
Adv Nanobiomed Res ; 2(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36051821

RESUMO

Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1ß, and upregulating the expression of the anti-inflammatory genes TGF-ß and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.

4.
Front Oncol ; 11: 718408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868914

RESUMO

BACKGROUND: Late-stage diagnosis of ovarian cancer, a disease that originates in the ovaries and spreads to the peritoneal cavity, lowers 5-year survival rate from 90% to 30%. Early screening tools that can: i) detect with high specificity and sensitivity before conventional tools such as transvaginal ultrasound and CA-125, ii) use non-invasive sampling methods and iii) longitudinally significantly increase survival rates in ovarian cancer are needed. Studies that employ blood-based screening tools using circulating tumor-cells, -DNA, and most recently tumor-derived small extracellular vesicles (sEVs) have shown promise in non-invasive detection of cancer before standard of care. Our findings in this study show the promise of a sEV-derived signature as a non-invasive longitudinal screening tool in ovarian cancer. METHODS: Human serum samples as well as plasma and ascites from a mouse model of ovarian cancer were collected at various disease stages. Small extracellular vesicles (sEVs) were extracted using a commercially available kit. RNA was isolated from lysed sEVs, and quantitative RT-PCR was performed to identify specific metastatic gene expression. CONCLUSION: This paper highlights the potential of sEVs in monitoring ovarian cancer progression and metastatic development. We identified a 7-gene panel in sEVs derived from plasma, serum, and ascites that overlapped with an established metastatic ovarian carcinoma signature. We found the 7-gene panel to be differentially expressed with tumor development and metastatic spread in a mouse model of ovarian cancer. The most notable finding was a significant change in the ascites-derived sEV gene signature that overlapped with that of the plasma-derived sEV signature at varying stages of disease progression. While there were quantifiable changes in genes from the 7-gene panel in serum-derived sEVs from ovarian cancer patients, we were unable to establish a definitive signature due to low sample number. Taken together our findings show that differential expression of metastatic genes derived from circulating sEVs present a minimally invasive screening tool for ovarian cancer detection and longitudinal monitoring of molecular changes associated with progression and metastatic spread.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36710719

RESUMO

Fluorescence-guided surgery (FGS) is an emerging technique for tissue visualization during surgical procedures. Structures of interest are labeled with exogenous probes whose fluorescent emissions are acquired and viewed in real-time with optical imaging systems. This study investigated rare-earth-doped albumin-encapsulated nanocomposites (REANCs) as short-wave infrared emitting contrast agents for FGS. Experiments were conducted using an animal model of 4T1 breast cancer. The signal-to-background ratio (SBR) obtained with REANCs was compared to values obtained using indocyanine green (ICG), a near-infrared dye used in clinical practice. Prior to resection, the SBR for tumors following intratumoral administration of REANCs was significantly higher than for tumors injected with ICG. Following FGS, evaluation of fluorescence intensity levels in excised tumors and at the surgical bed demonstrated higher contrast between tissues at these sites with REANC contrast than ICG. REANCs also demonstrated excellent photostability over 2 hours of continuous illumination, as well as the ability to perform FGS under ambient lighting, establishing these nanocomposites as a promising contrast agent for FGS applications.

6.
Methods ; 190: 44-54, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32473293

RESUMO

Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.


Assuntos
Células-Tronco Mesenquimais , Actinas/genética , Diferenciação Celular , Condrogênese , Células-Tronco Pluripotentes Induzidas , Osteogênese/genética
7.
BMC Cancer ; 20(1): 1082, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172421

RESUMO

BACKGROUND: The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin. The spectrally distinct emissions of the holmium (Ho), erbium (Er), and thulium (Tm) cations that constitute the cores of these nanoprobes make them attractive candidates for optical molecular imaging of multiple disease biomarkers. METHODS: SWIR-emitting rare-earth-doped albumin nanocomposites (ReANCs) were synthesized using controlled coacervation, with visible light-emitting fluorophores additionally incorporated during the crosslinking phase for validation purposes. Specifically, HoANCs, ErANCs, and TmANCs were co-labeled with rhodamine-B, FITC, and Alexa Fluor 647 dyes respectively. These Rh-HoANCs, FITC-ErANCs, and 647-TmANCs were further conjugated with the targeting ligands daidzein, AMD3100, and folic acid respectively. Binding specificities of each nanoprobe to distinct cellular subsets were established by in vitro uptake studies. Quantitative whole-body SWIR imaging of subcutaneous tumor bearing mice was used to validate the in vivo targeting ability of these nanoprobes. RESULTS: Each of the three ligand-functionalized nanoprobes showed significantly higher uptake in the targeted cell line compared to untargeted probes. Increased accumulation of tumor-specific nanoprobes was also measured relative to untargeted probes in subcutaneous tumor models of breast (4175 and MCF-7) and ovarian cancer (SKOV3). Preferential accumulation of tumor-specific nanoprobes was also observed in tumors overexpressing targeted biomarkers in mice bearing molecularly-distinct bilateral subcutaneous tumors, as evidenced by significantly higher signal intensities on SWIR imaging. CONCLUSIONS: The results from this study show that tumors can be detected in vivo using a set of targeted multispectral SWIR-emitting nanoprobes. Significantly, these nanoprobes enabled imaging of biomarkers in mice bearing bilateral tumors with distinct molecular phenotypes. The findings from this study provide a foundation for optical molecular imaging of heterogeneous tumors and for studying the response of these complex lesions to targeted therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Corantes Fluorescentes/química , Raios Infravermelhos , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Neoplasias Ovarianas/patologia , Animais , Apoptose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Mol Biosci ; 7: 569415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134314

RESUMO

Therapeutic drug monitoring (TDM) in cancer, while imperative, has been challenging due to inter-patient variability in drug pharmacokinetics. Additionally, most pharmacokinetic monitoring is done by assessments of the drugs in plasma, which is not an accurate gauge for drug concentrations in target tumor tissue. There exists a critical need for therapy monitoring tools that can provide real-time feedback on drug efficacy at target site to enable alteration in treatment regimens early during cancer therapy. Here, we report on theranostic optical imaging probes based on shortwave infrared (SWIR)-emitting rare earth-doped nanoparticles encapsulated with human serum albumin (abbreviated as ReANCs) that have demonstrated superior surveillance capability for detecting micro-lesions at depths of 1 cm in a mouse model of breast cancer metastasis. Most notably, ReANCs previously deployed for detection of multi-organ metastases resolved bone lesions earlier than contrast-enhanced magnetic resonance imaging (MRI). We engineered tumor-targeted ReANCs carrying a therapeutic payload as a potential theranostic for evaluating drug efficacy at the tumor site. In vitro results demonstrated efficacy of ReANCs carrying doxorubicin (Dox), providing sustained release of Dox while maintaining cytotoxic effects comparable to free Dox. Significantly, in a murine model of breast cancer lung metastasis, we demonstrated the ability for therapy monitoring based on measurements of SWIR fluorescence from tumor-targeted ReANCs. These findings correlated with a reduction in lung metastatic burden as quantified via MRI-based volumetric analysis over the course of four weeks. Future studies will address the potential of this novel class of theranostics as a preclinical pharmacological screening tool.

9.
APL Bioeng ; 4(3): 030902, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32923843

RESUMO

Advances in nanotechnology have enabled the design of nanotherapeutic platforms that could address the challenges of targeted delivery of active therapeutic agents to the central nervous system (CNS). While the majority of previous research studies on CNS nanotherapeutics have focused on neurons and endothelial cells, the predominant resident immune cells of the CNS, microglia, are also emerging as a promising cellular target for neurodegeneration considering their prominent role in neuroinflammation. Under normal physiological conditions, microglia protect neurons by removing pathological agents. However, long-term exposure of microglia to stimulants will cause sustained activation and lead to neuronal damage due to the release of pro-inflammatory agents, resulting in neuroinflammation and neurodegeneration. This Perspective highlights criteria to be considered when designing microglia-targeting nanotherapeutics for the treatment of neurodegenerative disorders. These criteria include conjugating specific microglial receptor-targeting ligands or peptides to the nanoparticle surface to achieve targeted delivery, leveraging microglial phagocytic properties, and utilizing biocompatible and biodegradable nanomaterials with low immune reactivity and neurotoxicity. In addition, certain therapeutic agents for the controlled inhibition of toxic protein aggregation and for modulation of microglial activation pathways can also be incorporated within the nanoparticle structure without compromising stability. Overall, considering the multifaceted disease mechanisms of neurodegeneration, microglia-targeted nanodrugs and nanotherapeutic particles may have the potential to resolve multiple pathological determinants of the disease and to guide a shift in the microglial phenotype spectrum toward a more neuroprotective state.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32154238

RESUMO

Parkinson's Disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, the extracellular accumulation of toxic α-synuclein (αSYN) aggregates, and neuroinflammation. Microglia, resident macrophages of the brain, are one of the critical cell types involved in neuroinflammation. Upon sensing extracellular stimuli or experiencing oxidative stress, microglia become activated, which further exacerbates neuroinflammation. In addition, as the first line of defense in the central nervous system, microglia play a critical role in αSYN clearance and degradation. While the role of microglia in neurodegenerative pathologies is widely recognized, few therapeutic approaches have been designed to target both microglial activation and αSYN aggregation. Here, we designed nanoparticles (NPs) to deliver aggregation-inhibiting antioxidants to ameliorate αSYN aggregation and attenuate activation of a pro-inflammatory microglial phenotype. Ferulic acid diacid with an adipic acid linker (FAA) and tannic acid (TA) were used as shell and core molecules to form NPs via flash nanoprecipitation. These NPs showed a strong inhibitory effect on αSYN fibrillization, significantly diminishing αSYN fibrillization in vitro compared to untreated αSYN using a Thioflavin T assay. Treating microglia with NPs decreased overall αSYN internalization and intracellular αSYN oligomer formation. NP treatment additionally lowered the in vitro secretion of pro-inflammatory cytokines TNF-α and IL-6, and also attenuated nitric oxide and reactive oxygen species production induced by αSYN. NP treatment also significantly decreased Iba-1 expression in αSYN-challenged microglia and suppressed nuclear translocation of nuclear factor kappa B (NF-κB). Overall, this work lays the foundation for an antioxidant-based nanotherapeutic candidate to target pathological protein aggregation and neuroinflammation in neurodegenerative diseases.

12.
Tissue Eng Part A ; 26(3-4): 193-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31537172

RESUMO

Cell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the in vitro maturation and in vivo post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated in vitro functional activity similar to neurons cultured in two dimensions. A microfluidic droplet generation method was used to encapsulate cells within monodisperse SAPNS microspheres, which were subsequently used to transplant adherent, functional networks of DA neurons into the striatum of a 6-hydroxydopamine-lesioned PD mouse model. SAPNS microspheres significantly increased the in vivo survival of encapsulated neurons compared with neurons transplanted in suspension, and they enabled significant recovery in motor function compared with control lesioned mice using approximately an order of magnitude fewer neurons than have been previously needed to demonstrate behavioral recovery. These results indicate that such biomaterial scaffolds can be used as neuronal transplantation vehicles to successfully improve the outcome of cell replacement therapies for PD. Impact Statement Transplantation of dopaminergic (DA) neurons holds potential as a treatment for Parkinson's disease (PD), but low survival rates of transplanted neurons is a barrier to successfully improving motor function. In this study, we used hydrogel scaffolds to transplant DA neurons into PD model mice. The hydrogel scaffolds enhanced survival of the transplanted neurons compared with neurons that were transplanted in a conventional manner, and they also improved recovery of motor function by using significantly fewer neurons than have typically been transplanted to see functional benefits. This cell transplantation technology has the capability to improve the outcome of neuron transplantation therapies.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Neurônios Dopaminérgicos/transplante , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco
13.
Sci Rep ; 9(1): 10377, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316098

RESUMO

This study describes a new approach to discern early divergence in stem cell lineage progression via temporal dynamics of the cytoskeletal protein, F-actin. The approach involves real-time labeling of human mesenchymal stem cells (MSCs) and longitudinal tracking of the turnover dynamics of a fluorogenic F-actin specific probe, SiR-actin (SA). Cells cultured in media with distinct lineage factors and labeled with SA showed lineage specific reduction in the actin turnover shortly after adipogenic (few minutes) and chondrogenic (3-4 hours) commitment in contrast to osteogenic and basal cultured conditions. Next, composite staining of SA along with the competing F-actin specific fluorescent conjugate, phalloidin, and high-content image analysis of the complementary labels showed clear phenotypic parsing of the sub-populations as early as 1-hour post-induction across all three lineages. Lastly, the potential of SA-based actin turnover analysis to distinguish cellular aging was explored. In-vitro aged cells were found to have reduced actin turnover within 1-hour of simultaneous analysis in comparison to cells of earlier passage. In summary, SiR-actin fluorescent reporter imaging offers a new platform to sensitively monitor emergent lineage phenotypes during differentiation and aging and resolve some of the earliest evident differences in actin turnover dynamics.


Assuntos
Actinas/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Imagem Óptica/métodos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Adipogenia , Diferenciação Celular/genética , Proliferação de Células , Senescência Celular/fisiologia , Condrogênese , Humanos , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco
14.
ACS Biomater Sci Eng ; 4(7): 2305-2363, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30417087

RESUMO

Gene therapy is emerging as the next generation of therapeutic modality with United States Food and Drug Administration approved gene-engineered therapy for cancer and a rare eye-related disorder, but the challenge of real-time monitoring of on-target therapy response remains. In this study, we have designed a theranostic nanoparticle composed of shortwave-infrared-emitting rare-earth-doped nanoparticles (RENPs) capable of delivering genetic cargo and of real-time response monitoring. We showed that the cationic coating of RENPs with branched polyethylenimine (PEI) does not have a significant impact on cellular toxicity, which can be further reduced by selectively modifying the surface characteristics of the PEI coating using counter-ions and expanding their potential applications in photothermal therapy. We showed the tolerability and clearance of a bolus dose of RENPs@PEI in mice up to 7 days after particle injection in addition to the RENPs@PEI ability to distinctively discern lung tumor lesions in a breast cancer mouse model with an excellent signal-to-noise ratio. We also showed the availability of amine functional groups in the collapsed PEI chain conformation on RENPs, which facilitates the loading of genetic cargo that hybridizes with target gene in an in vitro cancer model. The real-time monitoring and delivery of gene therapy at on-target sites will enable the success of an increased number of gene- and cell-therapy products in clinical trials.

15.
Sci Rep ; 8(1): 16289, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389989

RESUMO

Stem cells are considered as a multipotent regenerative source for diseased and dysfunctional tissues. Despite the promise of stem cells, the inherent capacity of stem cells to convert to tissue-specific lineages can present a major challenge to the use of stem cells for regenerative medicine. We hypothesized that epigenetic regulating molecules can modulate the stem cell's developmental program, and thus potentially overcome the limited lineage differentiation that human stem cells exhibit based on the source and processing of stem cells. In this study, we screened a library of 84 small molecule pharmacological agents indicated in nucleosomal modification and identified a sub-set of specific molecules that influenced osteogenesis in human mesenchymal stem cells (hMSCs) while maintaining cell viability in-vitro. Pre-treatment with five candidate hits, Gemcitabine, Decitabine, I-CBP112, Chidamide, and SIRT1/2 inhibitor IV, maximally enhanced osteogenesis in-vitro. In contrast, five distinct molecules, 4-Iodo-SAHA, Scriptaid, AGK2, CI-amidine and Delphidine Chloride maximally inhibited osteogenesis. We then tested the role of these molecules on hMSCs derived from aged human donors and report that small epigenetic molecules, namely Gemcitabine and Chidamide, can significantly promote osteogenic differentiation by 5.9- and 2.3-fold, respectively. Taken together, this study demonstrates new applications of identified small molecule drugs for sensitively regulating the lineage plasticity fates of bone-marrow derived mesenchymal stem cells through modulating the epigenetic profile of the cells.


Assuntos
Engenharia Celular/métodos , Linhagem da Célula/genética , Plasticidade Celular/genética , Epigênese Genética/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Idoso , Aminopiridinas/farmacologia , Benzamidas/farmacologia , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Cultura Primária de Células , Bibliotecas de Moléculas Pequenas/farmacologia , Gencitabina
16.
Curr Protoc Stem Cell Biol ; 46(1): e54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29927102

RESUMO

This unit describes a protocol for acquiring and analyzing high-content super-resolution images of human stem cell nuclei for the characterization and classification of the cell differentiation paths based on distinct patterns of epigenetic mark organization. Here, we describe the cell culture, immunocytochemical labeling, super-resolution imaging parameters, and MATLAB-based quantitative image analysis approaches for monitoring human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs) as the cells differentiate towards various lineages. Although this protocol uses specific cell types as examples, this approach could be easily extended to a variety of cell types and nuclear epigenetic and mechanosensitive biomarkers that are relevant to specific cell developmental scenarios. © 2018 by John Wiley & Sons, Inc.


Assuntos
Biomarcadores/metabolismo , Linhagem da Célula/genética , Epigênese Genética , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Análise de Componente Principal , Triglicerídeos/metabolismo
17.
Acta Biomater ; 76: 21-28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29906627

RESUMO

Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. STATEMENT OF SIGNIFICANCE: A better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation.


Assuntos
Actinas/metabolismo , Biopolímeros/farmacologia , Diferenciação Celular/efeitos dos fármacos , Adesões Focais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliestirenos/farmacologia , Tirosina/análogos & derivados , Adipogenia/efeitos dos fármacos , Anisotropia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Tirosina/farmacologia
18.
J Mater Sci Mater Med ; 29(4): 38, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29564568

RESUMO

Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with ß-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.


Assuntos
Substitutos Ósseos , Transplante Ósseo , Osso e Ossos/fisiologia , Osteoclastos/fisiologia , Animais , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Masculino , Osteoblastos , Ratos , Ratos Sprague-Dawley
19.
J Biomed Opt ; 23(3): 1-4, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29564865

RESUMO

Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Metais Terras Raras/química , Microscopia Confocal/métodos , Nanocompostos/química , Imagem Óptica/métodos , Animais , Desenho de Equipamento , Feminino , Raios Infravermelhos , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Nus , Microscopia Confocal/instrumentação , Imagem Óptica/instrumentação , Imagem Corporal Total
20.
Nanomaterials (Basel) ; 8(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393918

RESUMO

Previously-designed amphiphilic scorpion-like macromolecule (AScM) nanoparticles (NPs) showed elevated potency to counteract oxidized low-density lipoprotein (oxLDL) uptake in atherosclerotic macrophages, but failed to ameliorate oxLDL-induced inflammation. We designed a new class of composite AScMs incorporating lithocholic acid (LCA), a natural agonist for the TGR5 receptor that is known to counteract atherosclerotic inflammation, with two complementary goals: to simultaneously decrease lipid uptake and inhibit pro-inflammatory cytokine secretion by macrophages. LCA was conjugated to AScMs for favorable interaction with TGR5 and was also hydrophobically modified to enable encapsulation in the core of AScM-based NPs. Conjugates were formulated into negatively charged NPs with different core/shell combinations, inspired by the negative charge on oxLDL to enable competitive interaction with scavenger receptors (SRs). NPs with LCA-containing shells exhibited reduced sizes, and all NPs lowered oxLDL uptake to <30% of untreated, human derived macrophages in vitro, while slightly downregulating SR expression. Pro-inflammatory cytokine expression, including IL-1ß, IL-8, and IL-10, is known to be modulated by TGR5, and was dependent on NP composition, with LCA-modified cores downregulating inflammation. Our studies indicate that LCA-conjugated AScM NPs offer a unique approach to minimize atherogenesis and counteract inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA